4 research outputs found

    Clustering Algorithms: Their Application to Gene Expression Data

    Get PDF
    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and iden-tify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure

    The present and future of deep learning in radiology

    No full text
    The advent of Deep Learning (DL) is poised to dramatically change the delivery of healthcare in the near future. Not only has DL profoundly affected the healthcare industry it has also influenced global businesses. Within a span of very few years, advances such as self-driving cars, robots performing jobs that are hazardous to human, and chat bots talking with human operators have proved that DL has already made large impact on our lives. The open source nature of DL and decreasing prices of computer hardware will further propel such changes. In healthcare, the potential is immense due to the need to automate the processes and evolve error free paradigms. The sheer quantum of DL publications in healthcare has surpassed other domains growing at a very fast pace, particular in radiology. It is therefore imperative for the radiologists to learn about DL and how it differs from other approaches of Artificial Intelligence (AI). The next generation of radiology will see a significant role of DL and will likely serve as the base for augmented radiology (AR). Better clinical judgement by AR will help in improving the quality of life and help in life saving decisions, while lowering healthcare costs. A comprehensive review of DL as well as its implications upon the healthcare is presented in this review. We had analysed 150 articles of DL in healthcare domain from PubMed, Google Scholar, and IEEE EXPLORE focused in medical imagery only. We have further examined the ethic, moral and legal issues surrounding the use of DL in medical imaging. © 201
    corecore